Using VisualDSolve to analyze nonlinear
differential equations

P. Aaron Lott

Department of Mathematics
University of Southern Mississippi

Abstract

Many nonlinear differential equations are used to model physical phenomenon, and thus there is considerable interest
in knowing how to predict the behavior of solutions to a nonlinear equation. Such an understanding is often obtained
by doing phase plane analysis. Using the computer algebra system Mathematica and an add-on package VisualDSolve,
we investigate various methods to predict the behavior of solutions to undamped autonomous and damped autonomous
nonlinear second order differential equations, through the use of contour plots, numerical solutions, and more sophisticated

graphics programs.
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VisualDSolve

VisualDSolve is a Mathematica add-on package designed to to analyze nonlinear differential equations
visually. This package was written by Professors Stan Wagon and Dan Schwalbe of Macalester College in
St. Paul Minnesota.
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Nonlinear differential equations arise in models for:

Motion - Pendulum
Population - Predator Prey
Magnetic behavior - Duffing’s equation

Many other mechanical and natural phenomenon




USA/USM Mini-conference 2000 3

In this presentation we will demonstrate tools is to show tools that aid in the analysis
of the global behavior of the following types of systems:

Undamped autonomous homogeneous

i+ f(z)=0 (1)

Damped autonomous homogeneous
&+ f(z,2) =0 (2)
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Non - Damped case:

The classical method of visually analyzing such systems is in the phase plane (z, %).
For an example of the analysis of eq: 1 we consider the equation

e T
oz
Togtg

Two ways we derive the phase plane of this system is via
Energy approach

Phase Plot approach
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Energy approach

r—3+ % =0
Multiply through by z and integrate
2 2 4
¢ x°
T2 42 4
2 4 + 8 (4)

Treating % as kinetic energy, —% + % as potential energy, and setting £ = y, our trajectories in the
phase plane can be thought of as contours in the Energy Surface.

1172 £B4
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Blay) =% - —+5 (5)
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Critical values of the system turn out to be the same as the critical values of E(z,y). (£1,0), (0,0)

E(+1,0) = %}, and E£(0,0) = 0. Plotting the contour curves at these critical values gives us our phase

portrait.

Figure 1: Various views of the Energy surface

Figure 2: Energy levels at _?1, 1—21, 0,0.1.

Here we can see our separatrix and classify the behavior of any trajectory noting the position of the initial

conditions.
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Vector fields

Vector fields are often used to visualize the behavior inside of the phase plane. One can see how the “fish”
from VisualDSolve's FlowField command produces a better perception of the trajectories in the following
example.

PhasePlot [{x’ [t] == y[t], y’[t] == .5*x[t] - .016*x’ [t]-.5*x[t] "3},
{x[t]1, y[t1}, {t, 0,22}, {x, -1.7, 1.7}, {y,-.75,.75},
FlowField -> True, NumberFish -> 20, Segments -> 10,
MaxSteps ->Infinity, WorkingPrecision -> 28];

PhasePlot[{x’[t] == y[t], y’[t] == .6*x[t] - .5*x[t]"3}, {x[t], y[tl},
{t, 0, 22}, {x, -1.7, 1.7}, {y, -.75, .75}, VectorField -> True,
MaxSteps -> Infinity, WorkingPrecision -> 28]
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Figure 3: Phase Portrait with fish vs. vector field.
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PhasePlot approach

The same type of analysis can be performed using VisualDSolve with the PhasePlot command. Given a
system, initial conditions, and a time interval, PhasePlot will produce the phase portrait of the system.

PhasePlot [{x’ [t] == y[t], y’[t] == .5*x[t] -.5%x[t]"3},
{x[t], y[t1}, {t,0,22}, {x, -1.7, 1.7},{y, - .75, .75},
InitialValues -> {{.5,.2}, {- .5, .2}, {-.5,-0.33}, {.5,0.33},
{-.42, .53}}, ParametricPlotFunction —-> FlowParametricPlot,
Rainbow ->True, NumberFish -> 120, Segments ->5,MaxSteps -> Infinity,
WorkingPrecision -> 28];

Here we show PhasePlot’s FlowParametricPlot option. This option shows part of the vector field plots
small “fish” to show the varying speed of the trajectory over the phase plane.
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Figure 4: Trajectories using fish.
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Animation 1
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Damped case:

Again, we would like to have a method to generate the phase plane of the system. For this case, we

consider the equation

15 T 3

T
L 15z a ;
T+ 1000 "2 T2 =0 (6)

The energy approach used in the non-damped case is no longer applicable, since we can not integrate the
&2 term. For the analysis of this equation we once again turn to VisualDSolve's PhasePlot method.

PhasePlot
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Figure 5: Trajectories using PhasePlot

We now analyze the behavior of the system by the phase plane. Notice that the centers we saw in figure
4 have now become attracting spiral points. Note separatrix is difficult to see.
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Animation2
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Basins of Attraction As in the non-damped case, we would like to be able to derive a separatrix so

that we can separate regions called basins of attraction. In the VisualDSolve book, the authors present a
way to approximate the separatrix. One picks two points near the origin and traces their trajectories over
negative time intervals.

PhasePlot[{x’ [t] == y[t], y’[t] == .5*x[t] - .016*x’[t] - .5*x[t]"3},
{x[t], y[tl}, {t, -0.1, -60}, {x,-1.7,1.7}, {y,-.75,.75%},
InitialValues -> {{0, - .00001}, {0, .00015}},

ShowEquilibria -> True, PlotStyle -> {{White},{Black}},

WindowShade -> GrayLevel[0.5], MaxSteps —->Infinity]

Figure 6: ”Separatrix” of eq.(6) using PhasePlot.
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Separatrix Approximation

PhasePlot creates an interpolating function using Mathematica's NDSolve. So, if we pick initial points p;
and po from the interpolating function generated in the previous code and run PhasePlot over a positive
time interval, we should still have an approximation to the separatrix

0.75 0.75
0.5 0.5
0. 25 0. 25
0 ° ° 0 ° °
0.25 0.25
0.5 0.5
0.75 0.75
1.5 1 0.5 0 0.5 1 1.5 -1.5 1 0.5 0 0.5 1 1.5

Figure 7: Trajectories obtained by running PhasePlot over the positive time interval (0, 80)

However, as we can see in the plots above, our points from the interpolating function do not lie on the
separatrix since their trajectories fall into the basins.
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Better Approximation

By the geometry of the phase plane, we can see that if we pick two points p;, ps that are close to each
other, with trajectories that lead to opposite basins of attraction, then there is a point p* between them
that lies on the separatrix. One may now use the bisection method on the line segment joining (p1, p2)
and search for the point p*.
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Figure 8:

Trajectories obtained by running PhasePlot over the positive time interval (0,80) with initial conditions found using a
trial and error root finding algorithm.
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Figure 9: Two distinct basins of attraction generated by polygon programming in the VisualDSolve text
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Conclusion

There is a reform under way in the teaching of elementary differential equations which down plays the
solving of specific types of equations and emphasizes qualitative aspect and nonlinear equations. Computer
oriented projects and visualization are the heart of the reform. We have been investigating how to display
the nature of critical values, trajectories, phase portraits, and other features of a nonlinear equation so
that one can effortlessly analyze the global behavior of dynamical systems.

We can now:
Use the energy approach to obtain a global view of non damped systems
Generate phase portraits of dynamical systems
Create animations of the phase portraits

Analyze phase plane of nonlinear differential equations



